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T H R E E - D I M E N S I O N A L  T O M O G R A P H Y  IN G A S  F L O W  D I A G N O S T I C S  

IN T H E  P R E S E N C E  O F  A N  O P A Q U E  B O D Y  

A. V. Likhachev and V. V. Pikalov UDC 533.9+518.517.948+533.605 

The possibility of  tomographic reconstruction of the density distribution in a three- 
dimensional gas f low with a complez structure is considered. The effect of  the presence of  an 
opaque body on the reconstruction results is studied. Specific features of  the inverse problem 
that are associated with practical realization of  the ezperiment, namely, a small number of 
viewing angles and the presence of noise in projection data, are taken into account in numerical 
simulation. 

Tomographic methods have been widely used in physical experiments in recent decades. The main area 
of application of tomography is the diagnostics of a low- or high-temperature plasma (see, for example, [1-3]). 
However, the present-day level of technology and engineering allows one to apply tomography in many other 
applications. Some problems dealing with the use of tomographic methods in gas dynamics were considered 
in [4, 5]. Vukieevid et al. [6] reconstructed very accurately the temperature field in the cross section of a 
convective flow of heated air on the basis of variations in its refractive index. Data obtained by the method 
of holographic interferometry were processed using tomographic algorithms. 

From the viewpoint of tomography, Vukieevi6 et al. [6] reconstructed a function of two variables using 
a set of its one-dimensional projections. The present paper presents the reconstruction of a function of three 
variables that describes the three-dimensional distribution of the refractive index in a flow, from its two- 
dimensional projections. This problem will be called below a problem of three-dimensional tomography. 
Some aspects of three-dimensional tomography were considered in [4, 7]. Despite great informativeness, 
three-dimensional tomography is seldom used in physical experiments because of technical difficulties in the 
collection of projection data, on the one hand, and the large amount of computations, which increases in an 
attempt to achieve better spatial resolution, on the other hand. 

The present paper is devoted to problems that can arise in an experiment on three-dimensional 
tomographic reconstruction of a flow density. Since the object of study in gas dynamics is often a flow around 
a solid body, which is usually optically opaque, we consider the effect of the presence of an opaque body in a 
flow on the reconstruction results. The specific features of the problem of three-dimensional tomography with 
high spatial resolution are also studied. Some aspects of this problem were considered in [8]. Special attention 
is paid to problems connected with the small number of viewing angles, their nonuniform distribution over 
the angles, and the presence of noise in projection data. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Two formulations of the problem of three-dimensional tomography 
are considered. 

(1) Let there be no opaque body. The problem can be formulated as follows. The function e(z ,  y, z) is 
reconstructed inside a bounded domain f~ C R 3 from a finite set of its projections fro(u, v), m = 1 , . . . ,  M (3 
is one of the projections in Fig. 1). The function f ( u , v )  in Fig. 1 is defined on a plane D that does not cross 
ft. The value of f (u ,  v) at some point of the plane D is the integral of 9(z, y, z) along the straight line that 
passes through this point and is perpendicular to the plane D. 
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Fig. 1 

(2) Let there be an opaque body 2. In this case, the above problem is complicated. We again reconstruct 
the function g(x, y, z) from the set of functions fro(u, v), where m = 1 , . . . ,  M. Nevertheless, now the values 
of fro(u, v) are not everywhere equal to the integrals of g(x, y, z) along the straight lines. The projection has 
a zero value in the region shaded by the opaque body. This shadow is shown in Fig. 1 as a black triangle in 
the plane D. Thus, the presence of an opaque body leads to loss of part of the information on the gasdynamic 
object 1 being examined. 

Projection data for the problem of three-dimensional tomography can be obtained, for example, by the 
methods of holographic interferometry. In this case, the functions fro(u, v) describe the phase difference when 
the corresponding beam passes through the domain ~ in the presence or absence of the examined disturbance 
of the medium. This quantity can be related to the total (along the beam) variation in the refractive index. 
Thus, the function g(x, y, z) is equal to the difference of the refractive indices of the medium and the object. 
Having reconstructed the function g(x, y, z) by tomographic methods and knowing the refractive index of the 
medium, we can determine the refractive index of the object. Holographic interferometry is described in detail 
in [5], and its use to obtain tomographic data can be found in [6]. 

2. T h e  A l g o r i t h m s  Used .  The problem of three-dimensional tomography described in Sec. 1 was 
preliminarily discretized in the usual way by Herman [7]. The reconstruction domain was sampled into cubic 
voxels, and the value of the function g(x, y, z) in each voxel was assumed to be constant. Square grids were 
defined on the support of each projection, and each node in these grids was correlated with one beam along 
which the integration was performed. The value of fro(u, v) at a node was equated to the integral along 
this beam. After discretization, the problem of three-dimensional tomography reduces to the system of linear 
algebraic equations 

Ag = f.  (2.1) 

Here A is a matrix of dimensions I • J ,  g E R J, f E R I, and g and f are vectors corresponding to the 
reconstructed function and the projection data, respectively. The element a~ of the matrix A is defined as the 
path length of the ith beam inside the j t h  voxel, i = 1 , . . . ,  I and j = 1 , . . . ,  J (through enumeration of the 
beams is used in all projections). 

As applied to flow tomography, system (2.1) has the features that it is significantly underdetermined 
(I << J) and sparse, i.e., the majority of the elements of the matrix A are equal to zero, and it also has 
large values of I and J. A number of iterative algorithms have been developed for solution of such systems�9 
The most popular algorithm in tomography is the Algebraic Reconstruction Technique (ART). As in [7], the 
(k + 1)th iterative solution for the ART is written as 

g(k+l) = g(k) + ~(k) fi(k) -- (ai(k),g (k)) ai(k), Ilai(k)[I ~ O, g(k+l) = g(k), [lai(k)ll = O, (2.2) 
Ila (k) ll2 
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where a i(k) is the i(k)th row of the matrix A, A (k) is the relaxation parameter, and i(k) = [k(mod I) + 1], 
i.e., the rows of the matrix A are exhausted in a cycle. The scalar product and the norm in R J are defined 
in the usual way. Herman [7] noted that the iterative process (2.2) converges if 0 < A ~< 2 for any first guess 
g(0) E R J. The ART is used in the present work for solution of the model problem in the absence of an opaque 
body. 

The use of algorithm (2.2) for flow reconstruction in the presence of an opaque body leads to severe 
distortions. These distortions occur because the projection values at the points shaded by the opaque body 
vanish, whereas, strictly speaking, the integrals of the function g(z, y, z) that are taken along the corresponding 
straight lines crossing the opaque body do not vanish. Thus, some equations of system (2.1) become inadequate 
for the problem, but algorithm (2.2) ignores this circumstance. 

In this case, the natural method of correcting the result is to omit equations that  became inadequate 
and to solve the resultant system by the ART. In the present work, this approach was implemented as follows. 
We call the projection taking two values, namely, 0 (the corresponding beam does not cross the body) and 1 
(otherwise), a shadow of the body. It was assumed that the shadows from the opaque body are known in the 
same directions as the projection of the function to be reconstructed, both being specified on identical grids. 
The following algorithm was used instead of (2.2): 

g(/=+t) = g(k) + )~(J:) fi(i=) - (ai(k),g (/=)) ai(/=), Ila~(k)ll # o, 
Ila~(~,)ll2 

0(k+l)  = g(k), Ilai(k)ll = 0, o(k+l)  = 0(k), ~ )  = 1. 

Here fop E R I is the vector corresponding to the shadows from the opaque body, and the other notation is 
the same as in (2.2). 

3. N u m e r i c a l  S imu la t ions .  General Remarks. The capabilities of the methods of three-dimensional 
tomography for reconstruction from data obtained in an aerophysical experiment were studied in the process 
of numerical simulation. The function 

5 

g(x,y,z)  = ~',gt(x,y,z),  (3.1) 
/----1 

where 

{ 1 _  r.~_~ 
g~(x,y, z) = d '  q < d ,  

0, q > p~, 
~t = ( ~ t ( ( =  - ~t) 2 + (y - yt)~)) 1/2 + "/tz; zl  ~< ~ <~ ~2, 

xt = pt c o s ( 2 ~ ( z  - z l )  + ~z),  yt = pz sin (2r .Jt (z  - z , )  + ~), 

was chosen as the three-dimensional model. 
In addition, the function g(x,y,z)  is limited in amplitude by unity, i.e., if the sum in (3.1) is larger 

than 1, its value is replaced by unity. Each of the functions gt(x, y, z) can be represented as a paxaboloid in the 
variables (z, y) that is specified in the region where this paraboloid takes nonnegative values, with the vertex 
at the point [xt(z), yt(z)]. The functions xt(z) and yt(z) determine the rotation of the paraboloid vertex about 
the z axis with frequency wt and initial phase ~t, the distance to the rotation axis being linearly dependent 
on the z coordinate with the factor "/t- 

Since the objective of the numerical simulation is to study the aspects of tomographic reconstruction 
of a flow structure of complex form in the presence of an opaque body rather than the flow around the solid 
body itself, the authors did not intend to develop a model of some realistic flow. The chosen model only 
outlines swirled streamlines that could be formed in principle in a flow around a rotating cone by heated gas 
streams. 

154 



TABLE 1 

1 p tr p 7 w ~, deg 1 p a p 3' w ~, deg 

1 0.15 3.0 0.7 -0.7 1.85 O 4 0.15 3.0 0.7 -0.7 2.00 216.0 
2 0.15 3.0 0.7 -0.7 1.95 72.0 5 0.15 3.0 0.7 -0.7 1 .90  288.0 
3 0.15 3.0 0.7 -0.7 2.00 144.0 

Fig. 2 
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In this interpretation of the model, some averaged value w would characterize the angular rotation 
velocity of the cone, and the values of ~'z would be close to the tangent of the apex angle of the cone. The 
quantities at and Pt would determine the radius of the hot gas stream crossed by the plane z = const. It is 
assumed that the change in the refractive index because of the increase in temperature is maximum in the 
center of this cross section (where it is equal to 1 in conventional units) and decreases toward the periphery 
according to a quadratic law. 

The parameters that  specify five functions gt(z, y, z) are presented in Table 1. 
Figure 2 shows a schematic of the cone and one of the gas streams around it. Isolines of the model in 

the section by the plane x = 0 are plotted in Fig. 3. 
A cube whose center is at the coordinate origin and whose side length is equal to 2 in dimensionles~ 

units is considered as the reconstruction domain. As the opaque body a straight cone is chosen whose axis 
coincides with the z axis, the apex is located at the point (0, 0, 0.4), its height is 1.2, and the radius of its 
base is 0.3. 

In modeling projection data, six projections were calculated in directions perpendicular to the z axis, 
and the angles with the positive direction of the z axis were 80, 100, 180, 190, 340, and 350 ~ This distribution 
of projections over the angles reflects the specific features of data acquisition in flow diagnostics. As a rule, 
the flow examined in experiments is surrounded by the nontransparent wall of a wind tunnel, which has a 
limited number of windows for flow observation. It is possible to take projections only within a narrow range 
of angles through each window. In our numerical experiment, we simulate data collected in a facility with 
three windows in the 0, 90, and 180 ~ directions, with two projections taken in each window. 

The reconstruction domain was sampled into 101 • 101 • 101 voxels. 129 • 129 grids were specified on 
the projections' supports. To estimate numerically the quality of the reconstruction, we used the normalized 
root-mean-square error 

= ( g ?  - ( 3 . 2 )  
"= - -  j - - 1  

where g~n and g~k) are the values of the function for the j t h  voxels of the model and for the iterative solution, 
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respectively. [The percentage estimate of the error of the solution is obtained from (3.2) by multiplying by 
100.] In describing the results, it is more convenient to change the definition of iteration for the ART used in 
Sec. 2. The iteration is now understood as a cycle in which all projection data are processed once. Thus, this 
"large" iteration corresponds to I iterations defined previously. 

Reconstruction from Ideal Data. Some results of reconstruction from ideal data are represented by 
curves 1 in Fig. 4, which illustrates the value of A versus the iteration number N. Figure 4a refers to 
reconstruction of the function g(z, y, z) without an opaque body. Figure 4b shows the reconstruction of the 
same function in the presence of an opaque body. It is seen from a comparison of curves 1 in Fig. 4 that an 
opaque body does not in principle affect the character of the convergence of the algorithm, but the value of 
A increases by approximately a factor of 1.3. 

The quality of the reconstruction in the presence of an opaque body can be visually estimated in Fig. 
5, which shows isolines of the reconstruction from six ideal projections in the section by the plane z = 0 after 
20 iterations of the ART. 

Reconstruction from Noisy Data. Preliminary Processing of Projections. To study the stability of the 
algorithm to errors in the initial data, we used the following model of random noise in projection data. 
The noise was assumed to be normally distributed with a zero mean and a variable dispersion, which was 
30% of the projection value at the point considered. Such a high level of noise was chosen to demonstrate 
the effectiveness of preliminary data processing and also the advantages of adaptive frequency filtration of 
projections in comparison with their averaging in e, moving window. 

Preliminary filtration of projections is sometimes used in tomography to improve the quality of the 
reconstruction if there is considerable noise (see, e.g., [2-4]). In this paper, we consider two types of filtration: 
averaging in a moving 3 x 3 window and low-frequency filtration. 

The filter Ha was used for low-frequency filtration of projections. The use of three-dimensional analogs 
of this filter in tomography was described in [9]. The filter/am is described as follows. The value of the 
Fourier image of each projection at the node (vk, vz) is filtered according to the equation H~](uk, vz) = 
](vk, ut)/[1 + a(u~ + u~)]. Assuming that the filter introduces distortions in projections that are similar to 
noise-produced distortions, the regularization parameter a was determined from the residual criterion 

l](vk, v~) - Hn](vk, vt)l 2 = di2ll]ll ~, (3.3) 
k,I 

where/f 2 is the estimate of the noise norm: 62= a2/[~-~ f2(vk, vl)] (a 2 is the total dispersion of the noise). 
k,l 

In this paper, Eq. (3.3) was solved numerically by the halving technique. 
Numerical simulations show that preliminary data processing improves the quality of the 

reconstruction. Frequency filtration of projections ensures the best results. This is illustrated in Fig. 4, where 
curves 2 correspond to the reconstruction without preliminary processing of projections and curves 3 and 4 
correspond to the reconstruction obtained using smoothed and Hr,-filtered projections, respectively. 
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Based on a theoretical analysis and a numerical simulation, we have shown that satisfactory 
tomographic reconstruction of complex three-dimensional flows near opaque bodies is possible. In numerical 
simulations, the root-mean-square error in reconstructing the model of a complex flow with vortex structures 
from six nonuniformly distributed projections was found to vary from 35 to 70%, depending on the presence 
or absence of an opaque body and noise. This result is quite satisfactory for reconstruction of such a complex 
three-dimensional model from such a limited set of projection data. In particular, it is seen from a comparison 
of Figs. 3 and 5 that the basic typical features of the density distribution are reconstructed fairly well. 

In reconstruction from projections with random noise, preliminary frequency filtration of projections is 
the most effective method. For this purpose, we have proposed a two-dimensional low-frequency regularizing 
filter. The regularization parameter has been calculated from the overall norm of the noise of the projections. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-02- 
03615). 
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